
Positive Effects of Utilizing Relationships Between
Inconsistencies for more Effective Inconsistency

Resolution (NIER Track)

Alexander Nöhrer
Johannes Kepler University

Linz, Austria
alexander.noehrer@jku.at

Alexander Reder
Johannes Kepler University

Linz, Austria
alexander.reder@jku.at

Alexander Egyed
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT
State-of-the-art modeling tools can help detect inconsisten-
cies in software models. Some can even generate fixing ac-
tions for these inconsistencies. However such approaches
handle inconsistencies individually, assuming that each sin-
gle inconsistency is a manifestation of an individual defect.
We believe that inconsistencies are merely expressions of
defects. That is, inconsistencies highlight situations under
which defects are observable. However, a single defect in
a software model may result in many inconsistencies and a
single inconsistency may be the result of multiple defects.
Inconsistencies may thus be related to other inconsistencies
and we believe that during fixing, one should consider clus-
ters of such related inconsistencies. This paper provides first
evidence and emerging results that several inconsistencies
can be linked to a single defect and show that with such
knowledge only a subset of fixes need to be considered dur-
ing inconsistency resolution.

Categories and Subject Descriptors: I.6.4 Simulation
and Modeling: Model Validation and Analysis

General Terms: Algorithms, Human Factors, Verification.

Keywords: User Guidance, Clustering, Inconsistencies

1. INTRODUCTION
Model inconsistencies are violations of design rules and

other constraints. Many technologies exist for automatically
detecting inconsistencies [9, 4]. However, today fixing those
inconsistencies is a non-trivial task that requires extensive
human-intervention (i. e., software engineers). To reduce the
complexity of such fixing tasks on the engineer’s side we pre-
viously proposed [11] to look at inconsistencies as symptoms
of defects rather than defects themselves. The idea was to
utilize relationships between inconsistencies for a more effec-
tive inconsistency resolution. This basic idea is not entirely
new and fairly established in the compiler community dating
back as early as 1982 when Johnson and Runciman wrote:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

“It is important to distinguish between an error diagnosis
and error reporting. Correct error diagnosis must rely upon
the programmer as it may depend upon intentions that are
not expressed in his program. The compiler’s job is correct
error reporting using a form and content of reports most
likely to help the programmer in error diagnosis. We can
compare error reports to the symptoms of a sick patient:
the location at which the error is detected is not necessarily
its source.” [8].

Inconsistencies in the modeling world are quite analogous
to compile-time errors in source code. In that spirit, incon-
sistencies are the observable symptoms caused by defects.
Fixing design models should thus not be seen as the fixing of
inconsistencies (i. e., curing the symptoms) but rather iden-
tifying and fixing the cause(s) for the inconsistencies (i. e.,
the causes being the defects; perhaps caused by different
stakeholder opinions [3]). Since a defect may cause multiple
inconsistencies (or none if not observable), it is not sufficient
for the engineer to identify the defects by exploring the fixes
of individual inconsistencies – though one of these fixes (if
computed correctly) must inevitably also involve the defect.

Software models typically contain many defects but cur-
rent state-of-the-art focuses on detecting and correcting in-
consistencies. The issue that inconsistencies are not self-
contained is largely ignored in the literature but is of essen-
tial importance. It is far more important to fix the cause
of an inconsistency than just the symptoms. After all, the
goal of an engineer is not just to resolve one inconsistency
at a time but in the end to get a consistent model with all
defects having been identified and resolved. While inconsis-
tencies can only be resolved by fixing the underlying defects,
we must recognize that those defects may also have caused
additional inconsistencies at other locations. In certain sit-
uations this could be reversed, meaning that several defects
cause the same inconsistency. An example for such a situ-
ation would be a requirement change in an already consis-
tent model. This requirement change should lead to several
model changes where initial changes are likely to conflict
with existing parts of the model. As a consequence the first
change(s) introduce inconsistencies, though these changes
would not be defects because they are the initial steps of
a larger requirements change. It follows that other model
elements need to be changed. Note that in this context,
the term defect may be misleading because propagating a
change is not the same thing as fixing a defect; however, the
same principles apply and we consider them quite analogous.

Our working assumption is that the number of fixes that
can be generated to resolve interrelated inconsistencies should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00

864

Figure 1: Two related Inconsistencies in a UML
model of a Light and a Switch.

decrease with the number of inconsistencies involved because
each inconsistency constrains the set of possible fixes. Con-
sidering the effects of multiple, interrelated inconsistencies
should make it simpler for engineers to identify and fix de-
fects in models or propagate changes. In this paper we
presents emerging results concerning the feasibility of this
proposed work:

1. How often do interrelated inconsistencies occur in real
world examples?

2. How many choices for fixing an inconsistency can be
excluded considering these interrelations? How strong
is this reduction?

We provide evidence that inconsistencies are related rather
with the help of fixing locations, which are the basis for ev-
ery fix generation approach, than fixes themselves. We are
not claiming that related inconsistencies always must have
single defects, but we show that the number of fixing loca-
tions decreases under the assumption that one defect causes
inconsistencies related through overlapping fixing locations.
Even though the example and the emerging results provided
in this work focus on UML models, we also have made sim-
ilar experience with fixes in another domain – configuration
scenarios in product lines.

This paper is structured as follows: In Section 2 we give
a brief description of the scenario and problem we address.
This is followed by the emerging results we have so far in
Section 3. In Section 4 we discuss the state-of-the-art and
related work. Finally we draw a conclusion and give an
outlook to future work in Section 5.

2. SCENARIO AND PROBLEM
Inconsistencies can be resolved through different fixing ac-

tions where each fixing action involves one or more changes
to model elements, we refer to those model elements as fixing
locations. Figure 1 shows a simple UML model describing a
Light with a Switch containing two inconsistencies. Those
inconsistencies are the result of the two violated constraints
stating that a state-chart transition must be defined as an
operation in the owner’s class and that a message must also
be defined as an operation in the receiver’s class – violated by
both the activate message and transition because the class
Light does not contain an operation of that name. Since

Figure 2: Fixing Locations for three Inconsistencies.

the state-chart describes the behavior of the class Light

and the activate message is an invocation on an object of
type Light, the consistency of both constraints is affected
by the class Light and its operations – indicating an over-
lap between those inconsistencies. Examples resolving both
inconsistencies based on the mentioned fixing location are:
adding the operation activate to the class Light, or chang-
ing the name of the existing operation turn-on to activate.
Obviously the common fix may not be the correct one,

depending on the engineer’s intentions, it could also be that
changing the names of the activate message and transition
to turn-on is the solution the engineer is looking for. How
to distinguish such situations and provide the right guidance
at the right time is not the focus of this paper, although the
results will have an impact on how to proceed with further
research into this area. Instead we present emerging results
concerning the number of fixing locations to start out with,
assuming that the correct fix is an overlapping one.

Figure 2 shows fixing locations (dots, triangle, and pen-
tagons) belonging to three different inconsistencies (ellipses
marked I1, I2, and I3). Each inconsistency has a set of fix-
ing locations and their overlap is defined by the intersection
of those sets. Applying this simple set operator, depending
on the knowledge which inconsistencies should be fixed or
not, the fixing locations to start out with can be derived
easily. For instance if inconsistencies I2 and I3 should be
resolved but not I1, the fixing locations to start out with
are represented by the pentagons in Figure 2.

The following emerging results try to answer the two re-
search question, how often do interrelated inconsistencies oc-
cur in real world examples and how many choices for fixing
an inconsistency can be excluded considering these interre-
lations as well as how strong this reduction is.

3. EMERGING RESULTS
Our emerging results are based on a set of four models

from industrial partners. Due to proprietary information we
are not allowed to present any specific details of the models.
The model sizes range from 1,200 to 33,000 model elements
containing several types of diagrams like class diagrams, se-
quence diagrams and state-charts as well as use-case dia-
grams. The used design rules check generic aspects of the
underlying meta model such as the definition of messages
and transitions as operations in the corresponding class of
the class diagram, as well as the direction of the associations
in the class diagram regarding the messages of the sequence
diagram, and if the connected classifiers of the association
ends are included in the namespace of the association. These
rules are derived from larger rules used by these industrial
partners (see [6] for a complete list).

865

Model #Elements #Incons. #Overlapping %

A 1282 36 29 80.5
B 2809 365 363 99.5
C 16255 489 487 99.6
D 33347 1271 1246 98.0

Table 1: Overview of Analyzed Models.

The results are based on the analysis of the accessed model
elements and their properties, using Egyed’s approach [4].
Each evaluation of a design rule inspects various properties
of different model elements and we call a single element of
this set a fixing location (Egyed refers to them as scope
elements in [4]). An evaluated design rule is either consistent
or inconsistent. In our results only inconsistent design rules
are considered. Side effects to other design rules, consistent
ones included, are disregarded at this time and not subject
of this paper, although of importance for further questions
proposed for future work.

Table 1 provides some background about the models used
for our evaluation. It shows the number of elements, how
many inconsistencies were detected, how many of these in-
consistencies have at least one fixing location in common
with another inconsistency, and the percentage of such over-
laps in inconsistencies. These results in Table 1 indicate that
most of the inconsistencies found in these real world models
have common fixing locations.

We conducted a detailed analysis of the overlapping in-
consistencies for each model, where we counted the number
of occurrences of different sized overlaps between inconsis-
tencies. For instance counting these areas in Figure 2 would
result in two occurrences of a size two overlap ({(I1 ∩ I2) \
(I1∩I2∩I3), (I2∩I3)\ (I1∩I2∩I3)}) and one occurrence of
a size three overlap ({I1 ∩ I2 ∩ I3}). The size of an overlap
is determined by the number of inconsistencies contributing
to an overlapping area. Although the percentage of over-
laps was very high in the analyzed models (see Table 1),
the composition clearly showed that most of the overlaps
were of size two, especially with bigger models. These re-
sults thus answer our first question of how often interrelated
inconsistencies in real world examples exist.

Having established that overlaps among inconsistencies
are common, in the following we will try to answer the sec-
ond question of how many choices for fixing an inconsistency
can be eliminated by considering the effects of interrelated
inconsistencies. We will try to answer this question indi-
rectly, again with the help of fixing locations since choices
for fixing an inconsistency are based on fixing locations. By
focusing on fixing locations, we try to avoid any bias from
different fix generation methods – particularly because at
present state-of-the-art is only able to compute fixing loca-
tions that cause inconsistencies completely but not neces-
sary all locations affected by fixes as this requires human
intervention [10].

Figure 3 shows the average number of common fixing loca-
tions for the different overlap groups. Each group has several
bars indicating the impact on the number of fixing locations
by considering additional inconsistencies of the overlap. For
overlaps of size two, there are two bars: the first account-
ing for the average number of fixing locations if both in-
consistencies are considered separately (no overlap effect).

Figure 3: Reduction of Fixing Locations based on
Overlap Size.

The second bar accounting for the average number of fixing
locations if the overlap among these two inconsistencies is
considered. We thus see the effect of no overlap vs. pairwise
overlap next to each other. The same is valid for overlaps of
bigger sizes though additional bars are used to indicate ad-
ditional overlaps. For example, the fixing locations of three
overlapping inconsistencies can be viewed individually (first
bar), pairwise as in any two overlapping inconsistencies out
of the three (second bar), and altogether (third bar). This is
simple to calculate. For example, if we wanted to calculate
these results for Figure 2, they would be the following:

• Overlaps size two: the first bar would be the result of
Average(| I1 |, | I2 |, | I3 |), the second bar the result
of Average(| I1 ∩ I2 |, | I1 ∩ I3 |, | I2 ∩ I3 |).

• Overlaps size three: since the same inconsistencies are
involved in the overlap size three the first two bars
would be the same, the third however would be the
result of Average(| I1 ∩ I2 ∩ I3 |).

These diagrams show consistently that the number of fix-
ing locations is approximately reduced by half considering
overlaps among two inconsistencies, but it also shows that
this effect diminishes in larger groups – the limited subse-
quent effect may be due to the small group of inconsistencies
considered.

In summary, we observe that clustering inconsistencies
significantly reduces the number of fixing locations to con-
sider. In all four models, we found that a clustering of two
inconsistencies already reduces the set of possible fixing lo-
cations by half. By reducing the basis (the locations) on
which fixing actions are being calculated, the number of ac-
tual fixing actions may even be reduced more drastically.
For further evaluation it is necessary to include more design
rules, perhaps also considering application or domain spe-
cific design rules as they are likely to further reduce the set
of possible fixing locations. Note again, that this work pre-
sumes that we know of the existence of clusters of related
inconsistencies to benefit from the reduction of fixing loca-
tions. What we have shown here is that there is a strong
benefit in understanding clusters to reduce the complexity
of fixing inconsistencies. Now that we know that research in
this direction is useful, our next step is to devise methods
for identifying such clusters. Furthermore, we plan on con-
sidering the side effects that a fix of an inconsistency might
have onto other inconsistencies, as this will likely provide
additional information on how to resolve an inconsistency.

866

4. RELATED WORK
Consistency management, especially inconsistency reso-

lution, has received considerable attention in the last two
decades. In this section we give a brief overview of work
that has been done in this research area.

First of all, to resolve inconsistencies they have to be de-
tected. However, the knowledge if the whole model or a sin-
gle constraint is consistent, is not enough to produce fixes.
As Nentwich et. al. for example stated in [9], it is impor-
tant that trace links from the inconsistency to the model
element(s) in question exist. In their work they propose
to use first-order logic to express consistency rules and are
able to provide trace links between inconsistent elements.
Performance also is an issue when checking for consistency
and approaches like the incremental consistency checking
approach by Egyed [4] addresses this issue.

After being detected, it is beneficial to temporarily live
with them [1], e. g. during the implementation of a require-
ments change. However, at some point those inconsistencies
have to be resolved, preferably with the support of auto-
mated techniques.

For generating fixing or repair actions several approaches
exist. On the one hand, Xiong et. al. propose writing ad-
ditional “fixing procedures” for each constraint, in order to
produce fixes when needed [13]. On the other hand Nentwich
et. al. describe [10] a method for generating interactive
repairs from first order logic formulae – the same formulae
that they already used to detect inconsistencies [9]. Another
approach described by Egyed et. al. [7] shows how to gen-
erate choices for fixing an inconsistency without having to
understand such formulae which can be complex in case con-
sistency rules are written in programming languages. These
approaches look at other model elements already defined in
the model and use them as choices. The generated choices
are then reduced by looking at the impact of each choice [5,
2] and removing those that would cause additional incon-
sistencies. This can be problematic as already mentioned
in the introduction because during fixing it could be neces-
sary to introduce new inconsistencies temporarily (refactor-
ing) [1]. Correspondingly, dismissing fixing actions because
they cause new inconsistencies could be counterproductive.
This is where our approach for reducing the fixing locations
(model elements) via overlaps could help.

Despite the considerable progress on research for fixing
inconsistencies, to the best of our knowledge no approach
looks at more than one inconsistency at a time. However,
the need for a more “global” approach during consistency
checking itself is demonstrated by Sabetzadeh et. al. in [12]
but not used for fixing yet. Additionally Nentwich et. al.
already stated in their work [10], that one of the biggest
challenges is not to look at one single inconsistency but to
look at inconsistencies from a more “global” point of view.
This notion is also in accordance with our vision that a more
“global” view should be beneficial for fixing inconsistencies.

5. CONCLUSIONS AND FUTURE WORK
In this work, we presented emerging results on the positive

effects of resolving clusters of inconsistencies at once. We see
that by not looking at inconsistencies individually but in
clusters of related inconsistencies we can reduce the number
of possible fixing locations by at least half. We also showed
that overlaps of fixing locations among inconsistencies not

only exist in real world examples but are the norm. This
work will be used as a basis for future research in generating
concrete fixes and more advanced concepts to improve the
usability of modeling tools in general. It also raises questions
regarding the circumstances when generating fixes based on
related inconsistencies makes sense and is in the best interest
of engineers.

Acknowledgments
We gratefully acknowledge the Austrian FWF (P21321-N15)
and IBM (SRG-CAS-2010-04) for funding this work.

6. REFERENCES
[1] R. Balzer. Tolerating Inconsistency. In 13th ICSE,

Austin, Texas, USA, pages 158–165, 1991.

[2] L. C. Briand, Y. Labiche, and L. O’Sullivan. Impact
Analysis and Change Management of UML Models. In
19th ICSM, Amsterdam, The Netherlands, pages
256–265, 2003.

[3] S. Easterbrook and B. Nuseibeh. Managing
Inconsistencies in an Evolving Specification. In 2nd
IEEE International Symposium on Requirements
Engineering, pages 48 – 55, 1995.

[4] A. Egyed. Instant consistency checking for the UML.
In 28th ICSE, Shanghai, China, pages 381–390, 2006.

[5] A. Egyed. Fixing Inconsistencies in UML Design
Models. In 29th ICSE, Minneapolis, USA, pages
292–301, 2007.

[6] A. Egyed. Automatically Detecting and Tracking
Inconsistencies in Software Design Models. IEEE
Transactions on Software Engineering,
99(RapidPosts), 2010.

[7] A. Egyed, E. Letier, and A. Finkelstein. Generating
and Evaluating Choices for Fixing Inconsistencies in
UML Design Models. In 23rd ASE, L’Aquila, Italy,
pages 99–108, 2008.

[8] C. W. Johnson and C. Runciman. Semantic Errors -
Diagnosis and Repair. In SIGPLAN Symposium on
Compiler Construction, pages 88–97, 1982.

[9] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: A Consistency Checking and
Smart Link Generation Service. ACM Trans. Internet
Techn., 2(2):151–185, 2002.

[10] C. Nentwich, W. Emmerich, and A. Finkelstein.
Consistency Management with Repair Actions. In 25th
ICSE, Portland, Oregon, USA, pages 455–464, 2003.

[11] A. Nöhrer and A. Egyed. Utilizing the Relationships
Between Inconsistencies for more Effective
Inconsistency Resolution. In 3rd Workshop on Living
with Inconsistencies in Software Development,
Colocated with ASE, Antwerp, Belgium, pages 39–43.
CEUR Workshop Proceedings Vol-661, 2010.

[12] M. Sabetzadeh, S. Nejati, S. M. Easterbrook, and
M. Chechik. Global consistency checking of
distributed models with TReMer+. In 30th ICSE,
Leipzig, Germany, pages 815–818, 2008.

[13] Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and
H. Mei. Supporting Automatic Model Inconsistency
Fixing. In 7th ESEC/FSE, Amsterdam, The
Netherlands, pages 315–324, 2009.

867

